

HD (Small two sided Hybrid)

Large Hybride

MLS (HYBRID)

Linear Position Sensor

SPECIFICATIONS

- AMR gradient sensor
- Linear displacement, movements, velocities
- High precision
- Various pole pitches available

Sliding the MLS-Sensors along a magnetic scale will produce a sine and a cosine output signal as a function of the position. In order to deliver satisfying results, this will be achieved as long as the air gap between sensor edge and magnetic scale surface does not exceed approximately half of the pole pitch. As the sensor principle is based on the anisotropic magneto resistance effect, the signal amplitudes are nearly independent on the magnetic field strength and therefore air gap variations do not have a strong effect on the accuracy. The sensor detects a magnetic gradient field and is thus almost insensitive to homogenous magnetic stray fields.

Precise displacement values will be obtained by using a sine/cosine decoder device. The maximal obtainable precision depends on the accuracy of the magnetic scale and on the distance sensor – magnetic scale. Values of <1% of the pole pitch are common.

FEATURES

- Sin- / cos-output signals suitable for signal evaluation by standard-ASIC's
- Very high precision
- Insensitive to air gap fluctuations
- Highly reliable
- Low interference field sensitivity

APPLICATIONS

- Linear displacement, movements, velocities in dirty environments
- Very precise angular measurement using pole wheels

SENSOR BASICS

The MLS-sensors consists of two magneto resistive Wheatstone bridges, whose resistors are placed in a way that in combination with a magnetic scale, a sine and a cosine signal is obtained. Thus, MLS sensors will only work together well with pole stripes that meet the design pole pitch. In addition, some sensor types integrate over more than one pole in order to improve sensor performance.

CHARACTERISTIC VALUES

PARAMETER	SYMBOL	CONDITION	Түре	Min	Түр	Мах	Unit
1. Operating Limits							
max. supply voltage	V _{cc,max}					10	V
max. current (both bridges)	I _{cc,max}		MLS1000/8 MLS2000/5000			5 10	mA
operating temperature	T _{op}			-40		+85	°C
storage temperature	T _{st}			-40		+125	°C
2. Sensor Specifications (T=25 °C)							
Supply voltage	Vcc				5		V
pole pitch *)	р		MLS1000 MLS2000 MLS5000 MLS8		1000 2000 5000 2500		μm
Resistance (both bridges)	Rb		MLS1000 MLS2000/5000 MLS8	2000 1000 30000	3000 1500 40000	4000 2000 50000	Ω
Output signal range	$\Delta V_n/V_{cc}$	А, В		16	22		mV/V

MAGNETIC LENGTH SENSOR MLS (HYBRID)

Offset voltage	V _{n off}	А, В		-1	0	+1	mV/V
3. Sensor Specifications							
TC of amplitude	TCSV	A, C			-0.35		%/K
TC of resistance	TCBR	A, C			+0.35		%/K
TC of offset	TCVoff	A, C		-4	0	+4	μV/V/K

n = 1;2 (bridge number); Stress above one or more of the limiting values may cause permanent damage to the device. Exposure to limiting values for extended periods may affect device reliability.

*) other pole pitches on request

MEASUREMENT CONDITIONS

PARAMETER	SYMBOL	Unit	CONDITION		
A. Set Up Conditions					
ambient temperature	Т	°C	T = 25 °C (unless otherwise noted)		
supply voltage	V _{cc}	V	Vcc = 5 V		
applied magnetic field	Н	kA/m	H > 10 kA/m		
B. Sensor Specifications (T=25 °C	C, 360° turn , H	l=25 kA/m , V	o _{max} >0, Vo _{min} <0)		
output signal range	$\Delta V_n / V_{cc}$	mV/V	$\Delta V_n / V_{cc} = (V_n max - V_n min) / V_{cc}$		
signal offset	V _{off n}	mV/V	Voff n = (Vn max + Vn min) / Vcc		
C. Sensor Specifications (T=-25°C, +125°C)					
ambient temperatures	Т	°C	$T_1 = -25 \text{ °C}, T_0 = +25 \text{ °C}, T_2 = +125 \text{ °C}$		
TC of amplitude	TCSV	%/K	$TCV = \frac{1}{(T_2 - T_1)} \cdot \frac{\frac{\Delta V_n}{V_{cc}}(T_2) - \frac{\Delta V_n}{V_{cc}}(T_1)}{\frac{\Delta V_n}{V_{cc}}(T_1)} \cdot 100\%$		
TC of resistance	TCBR	%/K	$TCR = \frac{1}{(T_2 - T_1)} \cdot \frac{R_n(T_2) - R_n(T_1)}{R_n(T_1)} \cdot 100\%$		
TC of offset	TCVoff	μV/(VK)	$TCVoff_n = \frac{Voff_n(T_2) - Voff_n(T_1)}{(T_2 - T_1)}$		

n = 1;2 (bridge number)

PACKAGES

HD (SMALL TWO SIDED HYBRID)

Pin	MLS1000HD	MLS2000HD	MLS5000HD	MLS8HD
1	GND	+V2	+V2	+V2
2	Vcc	Vcc	Vcc	Vcc
3	-V2	GND	GND	GND
4	+V2	+V1	+V1	+V1
5	-V1	-V1	-V1	-V2
6	+V1	-V2	-V2	-V1

HS (STANDARD HYBRID)

BOTTOM VIEW

Pin	Annotation	Name
OR	Output signal	V _{cos-}
SW	Supply voltage	V _{cc}
BR	Ground	GND
GN	Output signal	V _{sin-}
GE	Output signal	V_{sin+}
RT	Output signal	V _{cos+}

EVALUATION KIT

Pin	Annotation	Name
1	Ground	Gnd
2	Output signal	$V_{\text{cos+}}$
3	Output signal	V_{sin+}
4	Supply voltage	V _{cc2}
5	Output signal	V _{sin-}
6	Output signal	V _{cos-}
7	Supply voltage	V _{cc1}

APPLICATION EXAMPLE

Exemplary hardware configuration using an Analog Devices AD8605 amplifier for preprocessing MLS5000 signals for usage with common Microcontroller

TEST REQUIREMENTS

The parameters of the MLS sensor are measured in combination with a magnetic scale. The magnetic scale consists of magnetic rubber material, bonded on a steel carrier. The pole pitch of the scale has to match to the a e D sensor type (see characteristic values). MEAS can provide short strips of scales for reference. ЧЦ The maximum used air gap between the sensor module and the scale has to × match the sensor type and not exceed: E Measurement direction \leftrightarrow MLS1000: 0.5 mm MLS2000: 1 mm 00000 MLS5000: 2.5 mm pole pitch MLS8: 1.25 mm Test temperature: 25°C Steel carrier 0,1mm thickness The use of IC-Haus interpolation circuit IC-NQ is recommended for signal evaluation.

magnetic rubber, 1mm thickness

ORDERING CODES

	MLS1000	MLS2000	MLS5000	MLS8
Large hybrid (HS)	on request	eng. samples	G-MRCO-012	eng. samples
2side hybrid (HD)	G-MRCO-038	G-MRCO-039	G-MRCO-040	G-MRCO-041

NORTH AMERICA

Measurement Specialties, Inc., a TE Connectivity Company Phone: +1-800-522-6752 Email: customercare.hmpt@te.com

EUROPE

MEAS Deutschland GmbH (Europe) a TE Connectivity Company Phone: +49-800-440-5100 Email: customercare.dtmd@te.com

ASIA

Measurement Specialties (China), Ltd., a TE Connectivity Company Phone: +86-400-820-6015 Email: <u>customercare.shzn@te.com</u>

TE.com/sensorsolutions

Measurement Specialties, Inc., a TE Connectivity company.

Measurement Specialties, TE Connectivity, TE Connectivity (logo) and EVERY CONNECTION COUNTS are trademarks. All other logos, products and/or company names referred to herein might be trademarks of their respective owners.

The information given herein, including drawings, illustrations and schematics which are intended for illustration purposes only, is believed to be reliable. However, TE Connectivity makes no warranties as to its accuracy or completeness and disclaims any liability in connection with its use. TE Connectivity's obligations shall only be as set forth in TE Connectivity's Standard Terms and Conditions of Sale for this product and in no case will TE Connectivity be liable for any incidental, indirect or consequential damages arising out of the sale, use or misuse of the product. Users of TE Connectivity products should make their own evaluation to determine the suitability of each such product for the specific application.

© 2015 TE Connectivity Ltd. family of companies All Rights Reserved.

