

Vishay Siliconix

HALOGEN FREE

Precision Monolithic Quad SPST CMOS Analog Switches

DESCRIPTION

The DG411 series of monolithic quad analog switches was designed to provide high speed, low error switching of precision analog signals. Combining low power (0.35 μ W) with high speed (t_{on}: 110 ns), the DG411 family is ideally suited for portable and battery powered industrial and military applications.

To achieve high-voltage ratings and superior switching performance, the DG411 series was built on Vishay Siliconix's high voltage silicon gate process. An epitaxial layer prevents latchup.

Each switch conducts equally well in both directions when on, and blocks input voltages up to the supply levels when off.

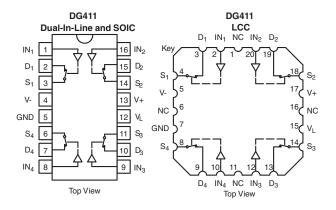
The DG411, DG412 respond to opposite control logic as shown in the Truth Table. The DG413 has two normally open and two normally closed switches.

BENEFITS

- · Widest dynamic range
- · Low signal errors and distortion
- Break-bevor-make switching action
- · Simple interfacing

FEATURES

- 44 V supply max. rating
- ± 15 V analog signal range
- On-resistance $R_{DS(on)}$: 25 Ω
- Fast switching ton: 110 ns
- Ultra low power P_D: 0.35 μW
- TTL, CMOS compatible
- · Single supply capability
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912


APPLICATIONS

- Precision automatic test equipment
- · Precision data acquisition
- · Communication systems
- · Battery powered systems

DG413

• Computer peripherals

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Datio	Datis
Dual-In-Line and SOIC	LCC
	D_1 IN_1 NC IN_2 D_2
IN ₁ 1 16 IN ₂	Key 3 2 1 20 19
D ₁ 2 15 D ₂	S_1 $A_{\bullet,\bullet}$ A_{\bullet} A_{\bullet
S ₁ 3 9 14 S ₂	V- \ 5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
V- 4 13 V+	NC 6
GND 5 12 V _L	$_{\text{GND}}$ $\left\{ 7 \right\}_{\text{V}_{\text{L}}}$
S ₄ 6 6 11 S ₃	S_4 $\frac{8}{5}$ $\frac{14}{5}$ S_3
D ₄ 7 10 D ₃	
IN ₄ 8 9 IN ₃	9 10 11 12 13
Top View	D_4 IN $_4$ NC IN $_3$ D $_3$ Top View

DG413

TRUTH TABLE						
LOGIC	DG411	DG412				
0	On	Off				
1	Off	On				

Note

 Logic "0" ≤ 0.8 V Logic "1" ≥ 2.4 V

TRUTH TABLE						
LOGIC	SW ₁ , SW ₄	SW ₂ , SW ₃				
0	Off	On				
1	On	Off				

Note

• Logic "0" ≤ 0.8 V Logic "1" ≥ 2.4 V

www.vishay.com

Vishay Siliconix

TEMP. RANGE	PACKAGE	PART NUMBER
		DG411DJ DG411DJ-E3
	16-pin plastic DIP	DG412DJ DG412DJ-E3
		DG413DJ DG413DJ-E3
-40 °C to +85 °C		DG411DY DG411DY-E3 DG411DY-T1 DG411DY-T1-E3
	16-pin narrow SOIC	DG412DY DG412DY-E3 DG412DY-T1 DG412DY-T1-E3
		DG413DY DG413DY-E3 DG413DY-T1 DG413DY-T1-E3
		DG411DQ-E3 DG411DQ-T1-E3
	16-pin TSSOP	DG412DQ-E3 DG412DQ-T1-E3
		DG413DQ-E3 DG413DQ-T1-E3

PARAMETER		LIMIT	UNIT	
V + to V -		44		
GND to V- GND to V -		25		
V _L		(GND - 0.3) to (V+) + 0.3	V	
Digital inputs ^a , V _S , V _D		(V-) -2 to (V+) + 2 or 30 mA, whichever occurs first		
Continuous current (any terminal)		30	mA	
Peak current, S or D (pulsed at 1 m	ns, 10 % duty cycle max.)	100	ША	
Storage temperature	(AK, AZ suffix)	-65 to +150	°C	
Storage temperature	(DJ, DY suffix)	-65 to +125	°C	
	16-pin plastic DIP ^c	470		
Power dissipation (package) ^b	16-pin narrow SOIC ^d	600	\/	
	16-pin CerDIP ^e	900	— mW	
	LCC-20 e	900		

Notes

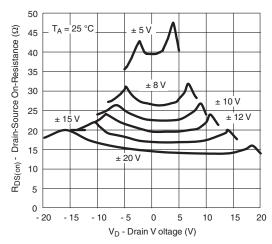
- a. Signals on S_X, D_X, or IN_X exceeding V + or V will be clamped by internal diodes. Limit forward diode current to maximum current ratings
- b. All leads welded or soldered to PC board
- c. Derate 6 mW/°C above 25 °C
- d. Derate 7.6 mW/°C above 75 °C
- e. Derate 12 mW/°C above 75 °C

www.vishay.com

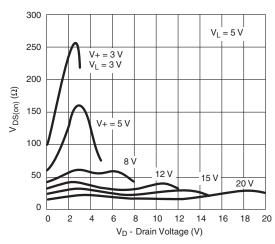
Vishay Siliconix

PARAMETER	SYMBOL	TEST CONDITIONS UNLESS SPECIFIED	TEMP. b	TYP. °		IFFIX D +125 °C		IFFIX O +85 °C	UNIT
PANAMETER	STIVIBOL	V + = 15 V, V - = -15 V $V_L = 5 V, V_{IN} = 2.4 V, 0.8 V f$	I CIVIP.	III.	MIN. d	MAX. d	MIN. d	MAX.d	ONII
Analog Switch									
Analog signal range ^e	V _{ANALOG}		Full	-	- 15	15	- 15	15	V
Drain-source	B-a	V + = 13.5 V, V - = -13.5 V,	Room	25	-	35	-	35	Ω
on-resistance	R _{DS(on)}	$I_S = -10 \text{ mA}, V_D = \pm 8.5 \text{ V}$	Full	-	-	45	-	45	52
	lo. 10		Room	± 0.1	-0.25	0.25	-0.25	0.25	
Switch off leakage current	I _{S(off)}	V + = 16.5, V - = -16.5 V,	Full	-	-20	20	-5	5	
Switch on leakage current	1	$V_D = \pm 15.5 \text{ V}, V_S = \pm 15.5 \text{ V}$	Room	± 0.1	-0.25	0.25	-0.25	0.25	nA
	I _{D(off)}		Full	-	-20	20	-5	5	II/A
Channel on leakage	ا اسا	V + = 16.5 V, V - = -16.5 V,	Room	± 0.1	-0.4	0.4	-0.4	0.4	
current	I _{D(on)}	$V_S = V_D = \pm 15.5 \text{ V}$	Full	-	-40	40	-10	10	
Digital Control									
Input current, V _{IN} low	I _{IL}	V _{IN} under test = 0.8 V	Full	0.005	-0.5	0.5	-0.5	0.5	uА
Input current, V _{IN} high	I _{IH}	V _{IN} under test = 2.4 V	Full	0.005	-0.5	0.5	-0.5	0.5	μΑ
Dynamic Characteristics									
Turn-on time	t _{on}			110	-	175	-	175	
Turri-ori time	-011	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = \pm 10 V$, see Fig. 2	Full	-	-	240	-	220	ns
Turn-off time	t _{off}		Room	100	-	145	-	145	
rain on time	- 0ff		Full	-	-	160	-	160	
Break-before-make time delay	t_D	DG413 only, $V_S = 10 \text{ V}$, $R_L = 300 \Omega$, $C_L = 35 \text{ pF}$	Room	25	-	-	-	-	
Charge injection	Q	$V_g = 0 \text{ V}, R_g = 0 \Omega, C_L = 10 \text{ nF}$	Room	5	-	-	-	-	рC
Off isolation e	OIRR		Room	68	-	-	-	-	
Channel-to-channel crosstalk ^e	X _{TALK}	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$	Room	85	-	-	-	-	dB
Source off capacitance e	C _{S(off)}		Room	9	-	-	-	-	
Drain off capacitance e	C _{D(off)}	f = 1 MHz	Room	9	-	-	-	-	pF
Channel on capacitance e	C _{D(on)}		Room	35	-	-	-	-	1
Power Supplies									
Docitivo oupply ourrent	1.		Room	0.0001	-	1	-	1	
Positive supply current	I+		Full	-	-	5	-	5	
Magativa aupply augrest	I-		Room	-0.0001	-1	-	-1	-	
Negative supply current	I=	V + = 16.5 V, V - = -16.5 V,	Full	-	-5	-	-5	-	,.,
Logic supply suggest	IL	$V_{IN} = 0 \text{ V or 5 V}$	Room	0.0001	-	1	=	1	μA
Logic supply current	ıL		Full	-	-	5	-	5	
Ground current	laura		Room	-0.0001	-1	-	-1	-	
Ground current	I _{GND}		Full	-	-5	-	-5	-	

Vishay Siliconix

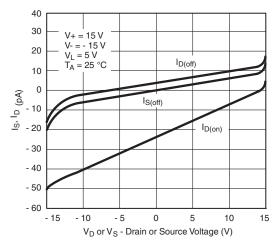

SPECIFICATIONS	a (unipola	r supplies)							
PARAMETER	SYMBOL	TEST CONDITIONS UNLESS SPECIFIED	TEMP. b	TYP. °	A SUFFIX -55 °C TO +125 °C			IFFIX O +85 °C	UNIT
. , ,	01111202	V + = 12 V, V - = 0 V $V_L = 5 V, V_{IN} = 2.4 V, 0.8 V^f$			MIN. d	MAX. d	MIN. d	MAX. d	0
Analog Switch									
Analog signal range e	V _{ANALOG}		Full	-	-	12	-	12	V
Drain-source	D	$V + = 10.8 \text{ V}, I_S = -10 \text{ mA},$	Room	40	-	80	-	80	Ω
on-resistance	R _{DS(on)}	$V_D = 3 V, 8 V$	Full	-	-	100	-	100	52
Dynamic Characteristics	3								
Turn-on time	+		Room	175	-	250	-	250	
rum-on time	t _{on}	$R_L = 300 \Omega, C_L = 35 pF,$	Hot	-	-	400	-	315	
Turn-off time		$V_S = 8 V$, see Fig. 2	Room	95	-	125	-	125	ns
rum-on ume	t _{off}		Hot	-	-	140	-	140	110
Break-before-make time delay	t _D	DG413 only, $V_S = 8 V$, $R_L = 300 \Omega$, $C_L = 35 pF$	Room	25	-	-	-	-	
Charge injection	Q	$V_g = 6 \text{ V}, R_g = 0 \Omega, C_L = 10 \text{ nF}$	Room	25	-	-	-	-	рС
Power Supplies									
Positive supply current	l+		Room	0.0001	-	1	-	1	
Positive supply current	I+		Hot	-	-	5	-	5	
Negative events everent	I-		Room	-0.0001	-1	-	-1	-	
Negative supply current	Į-	V + = 13.5 V, V _{IN} = 0 V or 5 V	Hot	-	-5	-	-5	-	
Logic supply current	IL	v + = 13.3 v, v _{IN} = 0 v or 5 v	Room	0.0001	-	1	-	1	μA
Logic supply current	IL.		Hot	-	-	5	-	5	
Ground current	ı		Room	-0.0001	-1	-	-1	-	
Ground current	I _{GND}		Hot	-	-5	-	-5	-	

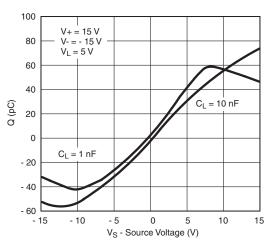
Notes

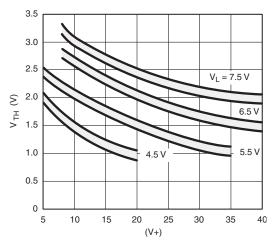

- a. Refer to process option flowchart
- b. Room = 25 °C, full = as determined by the operating temperature suffix
- Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing
- d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet
- e. Guaranteed by design, not subject to production test
- f. V_{IN} = input voltage to perform proper function.

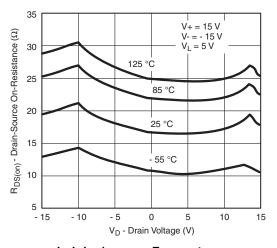
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

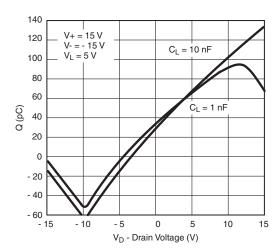
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

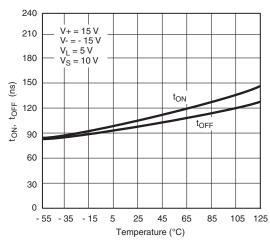

On-Resistance vs. V_D and Power Supply Voltage


On-Resistance vs. V_D and Unipolar Supply Voltage

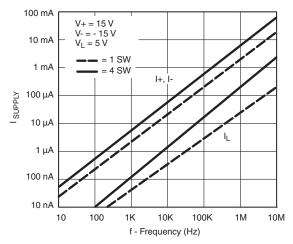

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Leakage Current vs. Analog Voltage

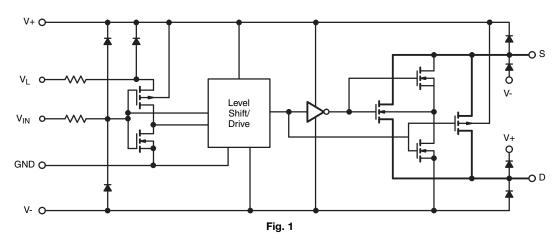

Charge Injection vs. Analog Voltage


Input Switching Threshold vs. Supply Voltage

I_D, I_S Leakages vs. Temperature


Charge Injection vs. Analog Voltage

Switching Time vs. Temperature



TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Supply Current vs. Input Switching Frequency

SCHEMATIC DIAGRAM (typical channel)

TEST CIRCUITS

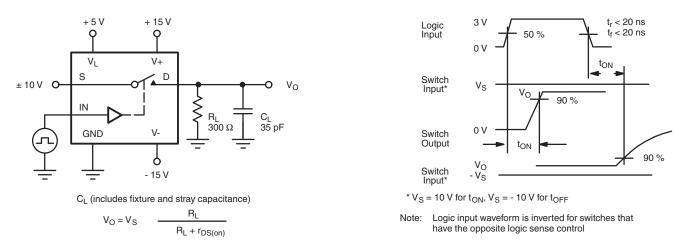
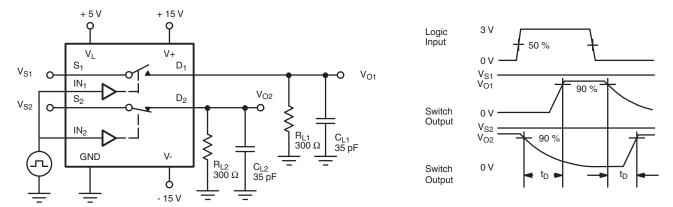



Fig. 2 - Switching Time

TEST CIRCUITS

C_L (includes fixture and stray capacitance)

Fig. 3 - Break-Before-Make (DG413)

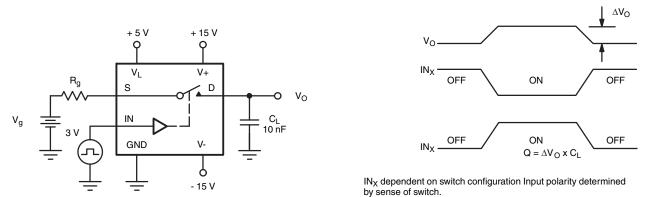


Fig. 4 - Charge Injection

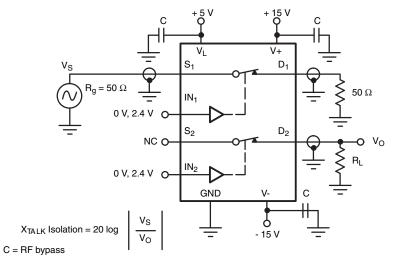


Fig. 5 - Crosstalk

Fig. 6 - Off Isolation

Meter HP4192A Impedance Analyzer or Equivalent

Fig. 7 - Source/Drain Capacitances

APPLICATIONS

Single Supply Operation

The DG411, DG412, DG413 can be operated with unipolar supplies from 5 V to 44 V. These devices are characterized and tested for unipolar supply operation at 12 V to facilitate the majority of applications. In single supply operation, V+ is tied to V_L and V- is tied to 0 V. See Input Switching Threshold vs. Supply Voltage curve for V_L versus input threshold requirements.

Summing Amplifier

When driving a high impedance, high capacitance load such as shown in Fig. 8, where the inputs to the summing amplifier have some noise filtering, it is necessary to have shunt switches for rapid discharge of the filter capacitor, thus preventing offsets from occurring at the output.

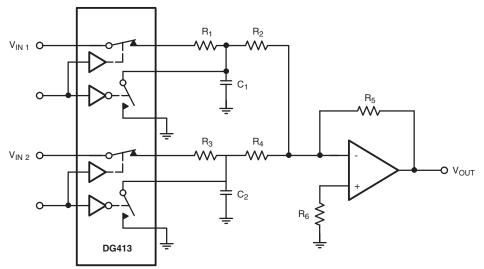
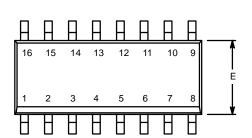


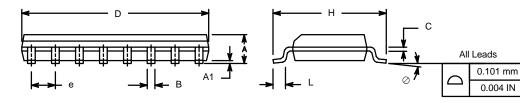
Fig. 8 - Summing Amplifier

www.vishay.com

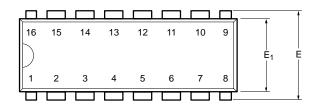

Vishay Siliconix

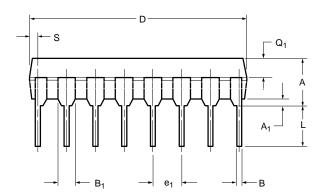
PRODUC	T SUMMA	RY							
Part number	DG411	DG411	DG411	DG412	DG412	DG412	DG413	DG413	DG413
Status code	2	2	2	2	2	2	2	2	2
Configuration	SPST x 4, NC	SPST x 4, NC	SPST x 4, NC	SPST x 4, NO	SPST x 4, NO	SPST x 4, NO	SPST x 4, comp	SPST x 4, comp	SPST x 4, comp
Single supply min. (V)	5	5	5	5	5	5	5	5	5
Single supply max. (V)	44	44	44	44	44	44	44	44	44
Dual supply min. (V)	5	5	5	5	5	5	5	5	5
Dual supply max. (V)	22	22	22	22	22	22	22	22	22
On-resistance (Ω)	25	25	25	25	25	25	25	25	25
Charge injection (pC)	5	5	5	5	5	5	5	5	5
Source on capacitance (pF)	35	35	35	35	35	35	35	35	35
Source off capacitance (pF)	9	9	9	9	9	9	9	9	9
Leakage switch on typ. (nA)	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Leakage switch off max. (nA)	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
-3 dB bandwidth (MHz)	-	-	-	-	-	-	-	-	-
Package	TSSOP-16	SO-16 (narrow) AS	Plastic DIP-16	SO-16 (narrow) AS	TSSOP-16	Plastic DIP-16	TSSOP-16	SO-16 (narrow) AS	Plastic DIP-16
Functional circuit / applications	Multi purpose, instrumentation, medical and healthcare	Multi purpose, instrumentation medical and healthcare							
Interface	Parallel	Parallel							
Single supply operation	Yes	Yes							
Dual supply operation	Yes	Yes							
Turn on time max. (ns)	175	175	175	175	175	175	175	175	175
Crosstalk and off isolation	-85	-85	-85	-85	-85	-85	-85	-85	-85

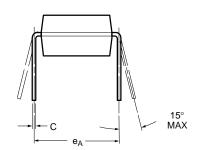
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg270050.



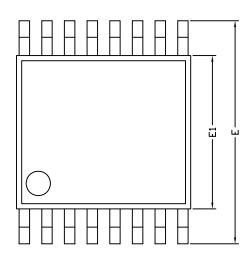
SOIC (NARROW): 16-LEAD JEDEC Part Number: MS-012

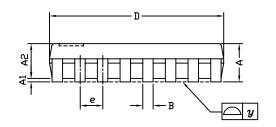

	MILLIMETERS		INC	HES			
Dim	Min	Max	Min	Max			
Α	1.35	1.75	0.053	0.069			
A ₁	0.10	0.20	0.004	0.008			
В	0.38	0.51	0.015	0.020			
С	0.18	0.23	0.007	0.009			
D	9.80	10.00	0.385	0.393			
E	3.80	4.00	0.149	0.157			
е	1.27	BSC	0.050	BSC			
Н	5.80	6.20	0.228	0.244			
L	0.50	0.93	0.020	0.037			
0	0°	8°	0°	8°			
ECN: S-0	ECN: S-03946—Rev. F, 09-Jul-01						

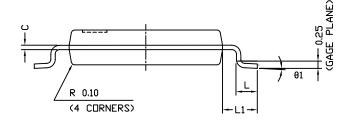

DWG: 5300



PDIP: 16-LEAD

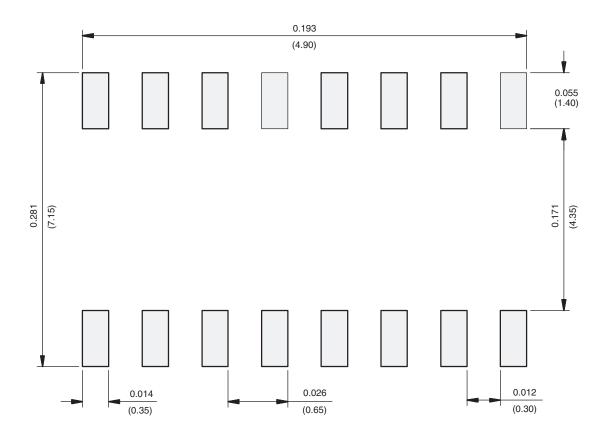

	MILLIN	IETERS	INC	ICHES			
Dim	Min	Max	Min	Max			
Α	3.81	5.08	0.150	0.200			
A ₁	0.38	1.27	0.015	0.050			
В	0.38	0.51	0.015	0.020			
B ₁	0.89	1.65	0.035	0.065			
С	0.20	0.30	0.008	0.012			
D	18.93	21.33	0.745	0.840			
E	7.62	8.26	0.300	0.325			
E ₁	5.59	7.11	0.220	0.280			
e ₁	2.29	2.79	0.090	0.110			
e _A	7.37	7.87	0.290	0.310			
L	2.79	3.81	0.110	0.150			
Q ₁	1.27	2.03	0.050	0.080			
S	0.38	1.52	.015	0.060			
ECN: S-0	ECN: S-03946—Rev. D, 09-Jul-01						


DWG: 5482


Document Number: 71261 www.vishay.com 06-Jul-01

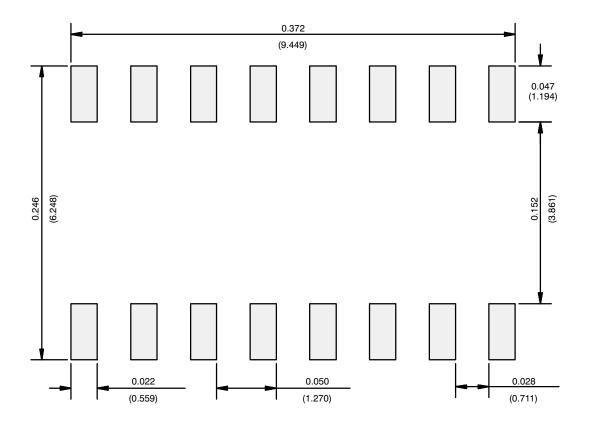
TSSOP: 16-LEAD

	DIMENSIONS IN MILLIMETERS						
Symbols	Min	Nom	Max				
А	-	1.10	1.20				
A1	0.05	0.10	0.15				
A2	-	1.00	1.05				
В	0.22	0.28	0.38				
С	-	0.127	-				
D	4.90	5.00	5.10				
E	6.10	6.40	6.70				
E1	4.30	4.40	4.50				
е	-	0.65	-				
L	0.50	0.60	0.70				
L1	0.90	1.00	1.10				
у	-	-	0.10				
θ1	0°	3°	6°				
FCN: S-61920-Rev D 23-	Oct-06	<u>.</u>					


ECN: S-61920-Rev. D, 23-Oct-06

DWG: 5624

Document Number: 74417
23-Oct-06
www.vishay.com


RECOMMENDED MINIMUM PAD FOR TSSOP-16

Recommended Minimum Pads Dimensions in inches (mm)

RECOMMENDED MINIMUM PADS FOR SO-16

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Ш

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.