
Pixy Pet Robot - Color vision follower
Created by Bill Earl

https://learn.adafruit.com/pixy-pet-robot-color-vision-follower-using-pixycam

©Adafruit Industries Page 1 of 39

Last updated on 2024-06-03 01:32:11 PM EDT

©Adafruit Industries Page 2 of 39

5

7

14

22

26

28

32

36

38

Table of Contents

Overview and Materials
• Materials:
• Tools:

Assemble the Camera
• Preparing the Pan/Tlt Base
• Remove the Side Tabs
• Trim the remaining tabs flush
• Cut a notch for the cable connectors
• Attach the Camera
• Connect the Servo Cables
• Secure the Cables

Seeduino Assembly
• No Leonardo? No Problem!
• Parts Required:
• Assembly:

Final Assembly
• Attach the Camera to the Leonardo
• Connect the ribbon cable
• Attach the Camera and Processor to the Zumo

Playing with your Pixy Pet!
• Teach the Camera
• Find a toy!
• Connect the Camera
• Run PixyMon
• Upload the Code
• Play Ball!

The Code

Pixy Pet Code Design
• Tracking Objects
• Following Objects

Feedback Control Basics
• Measurements, Setpoints, Errors and Ouputs
• Types of Control
• On/Off Control
• PID Control
• Proportional Control
• Integral Control
• Derivative Control

Troubleshooting

©Adafruit Industries Page 3 of 39

©Adafruit Industries Page 4 of 39

Overview and Materials
This project pairs the super-awsome Pixy CMUCam-5 vision system with the high
performance Zumo robot platform, a pan/tilt mechanism and an Arduino Leonardo for
a brain.

The Pixy camera has powerful image processing capabilities that can track objects by
color. It can track dozens of objects simultaneously and report their locations to the
Arduino in real-time. The built-in pan/tilt servo control is fast enough to track a
bouncing ball.

The Zumo robot is a low-profile tracked robot platform designed for an Arduino
controller. It uses two 75:1 precision micro metal gearmotors to drive extra grippy
silicone rubber treads. Zumo has traction and torque to spare, with a top speed of
approximately 2 feet per second (60 cm/s). This makes it a nimble little bot that can
zip along at high speed and still turn on a dime.

Putting all this together with an Arduino Leonardo processor, you can build yourself a
fun and responsive little bot that will chase objects or follow you around like a playful
pet!

The Pixy Pet Robot is simple to build with no soldering required. With just a few
common tools, you can complete the assembly in under an hour!

Before embarking on this project, please follow the Pixy and Zumo tutorials,
getting those working with the Arduino seperately and then you can combine
them!

©Adafruit Industries Page 5 of 39

Materials:
Pixy CMUcam-5 (http://adafru.it/1906)
Mini Pan/Tilt Kit - Assembled with Micro Servos (http://adafru.it/1967)*
Zumo Robot (http://adafru.it/1639)
Arduino Leonardo (http://adafru.it/849)** or Leonardo Compatible
Processor (http://adafru.it/3228)
Double-sided foam tape
Cable Ties
4x AA batteries

 * If you have some micro-servos already, we also have an unassembled pan/tilt
kit (http://adafru.it/1968) in the store. Some modifications may be required to fit your
servo horns to the pan/tilt kit.

** The official Arduino Leonardo has been discontinued, but the Seeeduino
Lite (http://adafru.it/3228) will work with some minor modifications.

Tools:
Wire Cutters
Scissors
USB A to Mini-B cable (for teaching the camera)
USB A to Micro-B cable (for uploading to the Leonardo)

•
•
•
•

•
•
•

•
•
•
•

Note: Due to the pin assignments of the Zumo robot shield, this project will not
work with an Uno or other Atmega 328-based processor.

©Adafruit Industries Page 6 of 39

https://www.adafruit.com/product/1906
https://www.adafruit.com/products/1967
https://www.adafruit.com/product/1639
https://www.adafruit.com/products/849
https://www.adafruit.com/products/3228
https://www.adafruit.com/products/3228
https://www.adafruit.com/products/1968
https://www.adafruit.com/products/1968
https://www.adafruit.com/products/3228
https://www.adafruit.com/products/3228

Assemble the Camera

The Pixy Camera itself is fully assembled. We just need to attach it to the pan/tilt base
and connect the servos.

©Adafruit Industries Page 7 of 39

Preparing the Pan/Tlt Base

The pan/tilt base has mounting tabs for a different style of camera module. We'll
need to remove these before attaching to the Pixy CMU-Cam.

The pan/tilt kit is available with and without sevos. The mechanism is sized to fit
standard micro sevo cases. However, servo horns are not standardized. If using
other servos, you may need to trim or re-shape the horns to fit.

©Adafruit Industries Page 8 of 39

Remove the Side Tabs
Cut the side tabs so that they are flush
with the face of the camera mounting
bracket.

The bracket is made of a fairly soft nylon,
so these are easly removed with a pair of
wire cutters.

©Adafruit Industries Page 9 of 39

https://learn.adafruit.com//assets/19011
https://learn.adafruit.com//assets/19011
https://learn.adafruit.com//assets/19012
https://learn.adafruit.com//assets/19012

Trim the remaining tabs flush
There are two smaller alignment tabs and
a cable guide that must be trimmed flush
also.

©Adafruit Industries Page 10 of 39

https://learn.adafruit.com//assets/19014
https://learn.adafruit.com//assets/19014
https://learn.adafruit.com//assets/19015
https://learn.adafruit.com//assets/19015
https://learn.adafruit.com//assets/19016
https://learn.adafruit.com//assets/19016

Cut a notch for the cable
connectors
We need to make room for the cable
connectors on the back of the camera
module. Two cuts, as shown in the photos
will remove the top left side of the bracket.

©Adafruit Industries Page 11 of 39

https://learn.adafruit.com//assets/19017
https://learn.adafruit.com//assets/19017
https://learn.adafruit.com//assets/19018
https://learn.adafruit.com//assets/19018
https://learn.adafruit.com//assets/19019
https://learn.adafruit.com//assets/19019

Attach the Camera
Cut a 1"x1" piece of double-sided foam
tape and position on the back of the
camera module as shown.

Remove the backing paper and align the
camera bracket as shown. The connector
headers on the back of the camera
module will fit into the notch we cut in the
previous step.

Press down firmly to adhere the camera to
the mounting bracket. Your final assembly
should look like the last photo to the left..

©Adafruit Industries Page 12 of 39

https://learn.adafruit.com//assets/19020
https://learn.adafruit.com//assets/19020
https://learn.adafruit.com//assets/19021
https://learn.adafruit.com//assets/19021
https://learn.adafruit.com//assets/19022
https://learn.adafruit.com//assets/19022
https://learn.adafruit.com//assets/19024
https://learn.adafruit.com//assets/19024

Connect the Servo Cables
The servo cables attach to the 2x6 pin
header on the back of the camera. The
cable for the pan servo (the bottom one)
should be on the left. The cable for the tilt
servo should be on the right. Make sure
that the brown wire is on the bottom and
the yellow wire is on top.

Tape the two connectors together. This
will make it easier to keep them from
getting mixed up if you have to disconnect
them later.

©Adafruit Industries Page 13 of 39

https://learn.adafruit.com//assets/19025
https://learn.adafruit.com//assets/19025
https://learn.adafruit.com//assets/19026
https://learn.adafruit.com//assets/19026

Secure the Cables
Route the servo cables as shown and
anchor to the pan/tilt base with cable ties.
 Be sure to leave enough slack so that the
cables will not interfere with the pan/tlt
motion.

Seeduino Assembly
No Leonardo? No Problem!

The Leonardo was one of our favorite Arduinos. Unfortunately it has been
discontinued. But fear not! The folks at Seeed Studio have designed the 32U4-based
Seeeduino Lite as a worthy replacement.

©Adafruit Industries Page 14 of 39

https://learn.adafruit.com//assets/19029
https://learn.adafruit.com//assets/19029
https://learn.adafruit.com//assets/19030
https://learn.adafruit.com//assets/19030

There is one little problem though. The Zumo chassis has a couple of unfortunately
placed capacitors that interfere with the DC jack and capacitors on the Seeeduino.
 The good news is that the Seeeduino ships without headers installed. So all you
need to do is replace them with slightly longer headers. The Arduino R3 Stacking
Headers (http://adafru.it/85) are just the thing we need.

Parts Required:
1 Seeeduino Lite (http://adafru.it/3228)
1 set of Arduino R3 Stacking Headers (http://adafru.it/85)
1 piece of the packing foam that comes with the Seeeduino Lite.

•
•
•

©Adafruit Industries Page 15 of 39

https://www.adafruit.com/products/85
https://www.adafruit.com/products/85
https://www.adafruit.com/products/3228
https://www.adafruit.com/products/85

Assembly:

Plug the headers upside-down into the
Zumo Chassis as shown.

©Adafruit Industries Page 16 of 39

https://learn.adafruit.com//assets/36662
https://learn.adafruit.com//assets/36662

Using a piece of the packing foam from
the Seeeduino kit, cut two small squares
roughly 1.5"x1.5" (3.5cm x 3.5cm) - These
dimensions are not super critical!

©Adafruit Industries Page 17 of 39

https://learn.adafruit.com//assets/36663
https://learn.adafruit.com//assets/36663
https://learn.adafruit.com//assets/36664
https://learn.adafruit.com//assets/36664
https://learn.adafruit.com//assets/36665
https://learn.adafruit.com//assets/36665

Stack the foam squares between the
extended headers.
 Avoid placing them on any of the taller
components on the Zumo chassis. They
should lay fairly flat on the PCB.

©Adafruit Industries Page 18 of 39

https://learn.adafruit.com//assets/36666
https://learn.adafruit.com//assets/36666
https://learn.adafruit.com//assets/36667
https://learn.adafruit.com//assets/36667

Place the Seeeduino Lite board face down
over the extended headers and let it rest
on the foam. There will be about 1/4"
(6mm) of the header pin showing below
the board.
Tack-solder the pins at the 4 corners of the
board, adjusting to keep it level if
necessary.
Then solder the remaining pins.

©Adafruit Industries Page 19 of 39

https://learn.adafruit.com//assets/36668
https://learn.adafruit.com//assets/36668
https://learn.adafruit.com//assets/36669
https://learn.adafruit.com//assets/36669
https://learn.adafruit.com//assets/36670
https://learn.adafruit.com//assets/36670

Install the 6-pin ICSP header from the
Seeeduino kit from the top side and solder
in place.

©Adafruit Industries Page 20 of 39

https://learn.adafruit.com//assets/36671
https://learn.adafruit.com//assets/36671
https://learn.adafruit.com//assets/36672
https://learn.adafruit.com//assets/36672

Trim the pins on the back and you are
ready for the final assembly of your Pixy
Pet!

©Adafruit Industries Page 21 of 39

https://learn.adafruit.com//assets/36673
https://learn.adafruit.com//assets/36673
https://learn.adafruit.com//assets/36674
https://learn.adafruit.com//assets/36674
https://learn.adafruit.com//assets/36675
https://learn.adafruit.com//assets/36675

Final Assembly
The Zumo itself comes pre-assembled, minus the Leonardo processor. We just need
to attach the processor and camera assembly and connect the cables.

©Adafruit Industries Page 22 of 39

Attach the Camera to the
Leonardo

Cut a piece of foam tape to fit in the
recess in the bottom of the pan/tilt base.
 (If you are using narrower tape, you can
use multiple pieces.)

Position the camera as shown on the
bottom of the Leonardo and press firmly to
attach.

You can use the dotted line above the
FCC/CE logos for alignment!

©Adafruit Industries Page 23 of 39

https://learn.adafruit.com//assets/19032
https://learn.adafruit.com//assets/19032
https://learn.adafruit.com//assets/19033
https://learn.adafruit.com//assets/19033
https://learn.adafruit.com//assets/19034
https://learn.adafruit.com//assets/19034
https://learn.adafruit.com//assets/19035
https://learn.adafruit.com//assets/19035

Connect the ribbon cable
The gray ribbon cable that came with your
Pixy has one 6-pin connector and one 8-
pin connector.

Attach the 6-pin end to the ICSP header
on the Leonardo as shown. Make sure to
align the edge with the red-stripe so that it
is closest to the "LEONARDO" logo on the
board.

Attach the 8-pin end to the back of the
Pixy. This connection is keyed, so there is
only one way you can plug it in.

©Adafruit Industries Page 24 of 39

https://learn.adafruit.com//assets/19036
https://learn.adafruit.com//assets/19036
https://learn.adafruit.com//assets/19037
https://learn.adafruit.com//assets/19037
https://learn.adafruit.com//assets/19038
https://learn.adafruit.com//assets/19038
https://learn.adafruit.com//assets/19040
https://learn.adafruit.com//assets/19040

Attach the Camera and
Processor to the Zumo

Align the Leonardo with the header pins
on the Zumo. The camera should be
facing the front.

Press firmly to seat the board on the
headers. And you are done!

©Adafruit Industries Page 25 of 39

https://learn.adafruit.com//assets/19041
https://learn.adafruit.com//assets/19041
https://learn.adafruit.com//assets/19042
https://learn.adafruit.com//assets/19042
https://learn.adafruit.com//assets/19043
https://learn.adafruit.com//assets/19043

Playing with your Pixy Pet!

Teach the Camera
The first thing you need to do is teach Pixy the objects you want it to track. The best
way to do this is using the PixyMon software. With PixyMon, you can see exactly what
Pixy sees and how well it has learned.

Find a toy!
Brightly colored balls are good. Place it in
view of the Pixy camera.

©Adafruit Industries Page 26 of 39

https://learn.adafruit.com//assets/19089
https://learn.adafruit.com//assets/19089

Connect the Camera
Connect the camera to your computer
using a mini-B USB cable.

Hint: If the software has already been
loaded, it helps to disconnect the servos
during the teaching process.

Download PixyMon
https://adafru.it/dSR

Run PixyMon
Download PixyMon from the link above.
 (There are several versions, be sure to
pick the right one for your operating
system.)
Launch the PixyMon application.
Select the "Cooked" view (click on the icon
with the chef's hat!) This view will show
you exactly what the Pixy camera sees in
real-time.
Click "Action->Set Signature1..."
Select an area on the ball to teach a color
to the camera.
Once learned, the camera will indicate
recognized objects with a rectangle and
signature number.

Upload the Code
Open the Arduino IDE and load the Pixy Code from the following page. Connect a
USB cable to the Leonardo on the Pixy Pet and upload the code.

Note: If the upload fails, try pressing the reseet button on the left side of the Zumo
board, shortly before the compile completes.

©Adafruit Industries Page 27 of 39

https://learn.adafruit.com//assets/19090
https://learn.adafruit.com//assets/19090
http://www.cmucam.org/projects/cmucam5/files
https://learn.adafruit.com//assets/19091
https://learn.adafruit.com//assets/19091

Play Ball!
Disconnect all the USB cables and make sure that the Servo cables are plugged
into the camera.
Make sure that the batteries are installed in the Zumo robot base.
Turn on the Zumo using the on/off switch located at the rear of the Zumo.

Once the bootloader has finished (the yellow led will stop flashing), Pixy will start
looking for the ball. Once it sees the ball it will move toward it and start to follow it
around.

The Code
Copy the code below into the Arduino IDE and upload. Make sure that you have
selected "Arduino Leonardo" in Tools->Board:

//==
//
// Pixy Pet Robot
//
// Adafruit invests time and resources providing this open source code,
// please support Adafruit and open-source hardware by purchasing
// products from Adafruit!
//
// Written by: Bill Earl for Adafruit Industries
//
//==
// begin license header
//
// All Pixy Pet source code is provided under the terms of the
// GNU General Public License v2 (http://www.gnu.org/licenses/gpl-2.0.html).
//
// end license header
//
//==
//
// Portions of this code are derived from the Pixy CMUcam5 pantilt example code.
//
//==
#include <SPI.h>
#include <Pixy.h>

#include <ZumoMotors.h>

#define X_CENTER 160L
#define Y_CENTER 100L
#define RCS_MIN_POS 0L
#define RCS_MAX_POS 1000L
#define RCS_CENTER_POS ((RCS_MAX_POS-RCS_MIN_POS)/2)

//---------------------------------------
// Servo Loop Class
// A Proportional/Derivative feedback
// loop for pan/tilt servo tracking of
// blocks.
// (Based on Pixy CMUcam5 example code)

•

•
•

©Adafruit Industries Page 28 of 39

//---------------------------------------
class ServoLoop
{
public:

ServoLoop(int32_t proportionalGain, int32_t derivativeGain);

void update(int32_t error);

int32_t m_pos;
int32_t m_prevError;
int32_t m_proportionalGain;
int32_t m_derivativeGain;

};

// ServoLoop Constructor
ServoLoop::ServoLoop(int32_t proportionalGain, int32_t derivativeGain)
{

m_pos = RCS_CENTER_POS;
m_proportionalGain = proportionalGain;
m_derivativeGain = derivativeGain;
m_prevError = 0x80000000L;

}

// ServoLoop Update
// Calculates new output based on the measured
// error and the current state.
void ServoLoop::update(int32_t error)
{

long int velocity;
char buf[32];
if (m_prevError!=0x80000000)
{

velocity = (error*m_proportionalGain + (error -
m_prevError)*m_derivativeGain)>>10;

m_pos += velocity;
if (m_pos>RCS_MAX_POS)
{

m_pos = RCS_MAX_POS;
}
else if (m_pos<RCS_MIN_POS)
{

m_pos = RCS_MIN_POS;
}

}
m_prevError = error;

}
// End Servo Loop Class
//---------------------------------------

Pixy pixy; // Declare the camera object

ServoLoop panLoop(200, 200); // Servo loop for pan
ServoLoop tiltLoop(150, 200); // Servo loop for tilt

ZumoMotors motors; // declare the motors on the zumo

//---------------------------------------
// Setup - runs once at startup
//---------------------------------------
void setup()
{

Serial.begin(9600);
Serial.print("Starting...\n");

pixy.init();
}

uint32_t lastBlockTime = 0;

©Adafruit Industries Page 29 of 39

//---------------------------------------
// Main loop - runs continuously after setup
//---------------------------------------
void loop()
{

uint16_t blocks;
blocks = pixy.getBlocks();

// If we have blocks in sight, track and follow them
if (blocks)
{

int trackedBlock = TrackBlock(blocks);
		FollowBlock(trackedBlock);
lastBlockTime = millis();

}
else if (millis() - lastBlockTime > 100)
{

motors.setLeftSpeed(0);
motors.setRightSpeed(0);
Scan		ForBlocks();

}
}

int oldX, oldY, oldSignature;

//---------------------------------------
// Track blocks via the Pixy pan/tilt mech
// (based in part on Pixy CMUcam5 pantilt example)
//---------------------------------------
int TrackBlock(int blockCount)
{

int trackedBlock = 0;
long maxSize = 0;

Serial.print("blocks =");
Serial.println(blockCount);

for (int i = 0; i < blockCount; i++)
{

if ((oldSignature == 0) || (pixy.blocks[i].signature == oldSignature))
{

long newSize = pixy.blocks[i].height * pixy.blocks[i].width;
if (newSize > maxSize)
{

trackedBlock = i;
maxSize = newSize;

}
}

}

int32_t panError = X_CENTER - pixy.blocks[trackedBlock].x;
int32_t tiltError = pixy.blocks[trackedBlock].y - Y_CENTER;

panLoop.update(panError);
tiltLoop.update(tiltError);

pixy.setServos(panLoop.m_pos, tiltLoop.m_pos);

oldX = pixy.blocks[trackedBlock].x;
oldY = pixy.blocks[trackedBlock].y;
oldSignature = pixy.blocks[trackedBlock].signature;
return trackedBlock;

}

//---------------------------------------
// 		Follow blocks via the Zumo robot drive
//
// This code makes the robot base turn

©Adafruit Industries Page 30 of 39

// and move to follow the pan/tilt tracking
// of the head.
//---------------------------------------
int32_t size = 400;
void 		FollowBlock(int trackedBlock)
{

int32_t followError = RCS_CENTER_POS - panLoop.m_pos; // How far off-center
are we looking now?

// Size is the area of the object.
// We keep a running average of the last 8.
size += pixy.blocks[trackedBlock].width * pixy.blocks[trackedBlock].height;
size -= size >> 3;

// 		Forward speed decreases as we approach the object (size is larger)
int forwardSpeed = constrain(400 - (size/256), -100, 400);

// Steering differential is proportional to the error times the forward speed
int32_t differential = (followError + (followError * forwardSpeed))>>8;

// Adjust the left and right speeds by the steering differential.
int leftSpeed = constrain(forwardSpeed + differential, -400, 400);
int rightSpeed = constrain(forwardSpeed - differential, -400, 400);

// And set the motor speeds
motors.setLeftSpeed(leftSpeed);
motors.setRightSpeed(rightSpeed);

}

//---------------------------------------
// Random search for blocks
//
// This code pans back and forth at random
// until a block is detected
//---------------------------------------
int scanIncrement = (RCS_MAX_POS - RCS_MIN_POS) / 150;
uint32_t lastMove = 0;

void Scan		ForBlocks()
{

if (millis() - lastMove > 20)
{

lastMove = millis();
panLoop.m_pos += scanIncrement;
if ((panLoop.m_pos >= RCS_MAX_POS)||(panLoop.m_pos <= RCS_MIN_POS))
{

tiltLoop.m_pos = random(RCS_MAX_POS * 0.6, RCS_MAX_POS);
scanIncrement = -scanIncrement;
if (scanIncrement < 0)
{

motors.setLeftSpeed(-250);
motors.setRightSpeed(250);

}
else
{

motors.setLeftSpeed(+180);
motors.setRightSpeed(-180);

}
delay(random(250, 500));

}

pixy.setServos(panLoop.m_pos, tiltLoop.m_pos);
}

}

©Adafruit Industries Page 31 of 39

Pixy Pet Code Design
OK. That was fun, but how does it work?

The Pixy Robot code consists of two main control systems: Object Tracking with the
Pixy Camera and the pan/tilt mechanism and Object Following with the Zumo robot
base.

Together these two systems produce a very natural looking response where the
'head' turns in response to motion and the 'body' follows.

Both control systems are based on Feedback Control Loops. For a detailed
explanation of how Feedback Control works, see the Feedback Control Basics page
in this guide.

Tracking Objects
Object tracking is implemented in the TrackBlock function. The hard work of object
detection and location is handled by the image processing system inside the Pixy
camera. It analyzes the image and identifies objects matching the color characteristics
of the object being tracked. It then reports the position size and colors of all the
detected objects back to the Arduino.

In the Arduino, we use this information to adjust the pan and tilt servos to try to keep
the tracked object in the center of the field of view.

//---------------------------------------
// Track blocks via the Pixy pan/tilt mech
// (based in part on Pixy CMUcam5 pantilt example)
//---------------------------------------
int TrackBlock(int blockCount)
{

int trackedBlock = 0;
long maxSize = 0;

Serial.print("blocks =");
Serial.println(blockCount);

for (int i = 0; i < blockCount; i++)
{

if ((oldSignature == 0) || (pixy.blocks[i].signature == oldSignature))
{

long newSize = pixy.blocks[i].height * pixy.blocks[i].width;
if (newSize > maxSize)
{

trackedBlock = i;
maxSize = newSize;

}
}

©Adafruit Industries Page 32 of 39

}

int32_t panError = X_CENTER - pixy.blocks[trackedBlock].x;
int32_t tiltError = pixy.blocks[trackedBlock].y - Y_CENTER;

panLoop.update(panError);
tiltLoop.update(tiltError);

pixy.setServos(panLoop.m_pos, tiltLoop.m_pos);

oldX = pixy.blocks[trackedBlock].x;
oldY = pixy.blocks[trackedBlock].y;
oldSignature = pixy.blocks[trackedBlock].signature;
return trackedBlock;

}

The Pan/Tilt control is implemented using 2 instances of the ServoLoop class - one for
the pan and one for the tilt. ServoLoop is a feedback control loop using both
Proportional + Derivative (PD) control. The measurements are the x (for pan) and y (for
tilt) positions of the blocks reported by the Pixy Camera. The setpoints are the x, y
position of the center of the camera's view. And the outputs are the servo positions.

On each pass through the main loop, we calculate the errors for the pan and tilt
controls as the difference between the measurements and the setpoints. Then we
invoke the ServoLoop control algorithms to calculate the outputs.

//---------------------------------------
// Servo Loop Class
// A Proportional/Derivative feedback
// loop for pan/tilt servo tracking of
// blocks.
// (Based on Pixy CMUcam5 example code)
//---------------------------------------
class ServoLoop
{
public:

©Adafruit Industries Page 33 of 39

ServoLoop(int32_t proportionalGain, int32_t derivativeGain);

void update(int32_t error);

int32_t m_pos;
int32_t m_prevError;
int32_t m_proportionalGain;
int32_t m_derivativeGain;

};

// ServoLoop Constructor
ServoLoop::ServoLoop(int32_t proportionalGain, int32_t derivativeGain)
{

m_pos = RCS_CENTER_POS;
m_proportionalGain = proportionalGain;
m_derivativeGain = derivativeGain;
m_prevError = 0x80000000L;

}

// ServoLoop Update
// Calculates new output based on the measured
// error and the current state.
void ServoLoop::update(int32_t error)
{

long int velocity;
char buf[32];
if (m_prevError!=0x80000000)
{

velocity = (error*m_proportionalGain + (error -
m_prevError)*m_derivativeGain)>>10;

m_pos += velocity;
if (m_pos>RCS_MAX_POS)
{

m_pos = RCS_MAX_POS;
}
else if (m_pos<RCS_MIN_POS)
{

m_pos = RCS_MIN_POS;
}

}
m_prevError = error;

}
// End Servo Loop Class
//---------------------------------------

Following Objects
The object following behavior is implemented in the FollowBlock function.
FollowBlock uses just proportional control. But we have two measurements (size and
pan position) and two outputs (left and right drive motors).

The size (block height times width) gives us a rough idea of how far away the object is
and we use that to calculate the 'forwardSpeed'. This makes the robot slow down as it
approaches the object. If the object appears larger than the setpoint value,
forwardSpeed will become negative and the robot will back up.

//---------------------------------------
// 		Follow blocks via the Zumo robot drive

©Adafruit Industries Page 34 of 39

//
// This code makes the robot base turn
// and move to follow the pan/tilt tracking
// of the head.
//---------------------------------------
int32_t size = 400;
void 		FollowBlock(int trackedBlock)
{

int32_t followError = RCS_CENTER_POS - panLoop.m_pos; // How far off-center
are we looking now?

// Size is the area of the object.
// We keep a running average of the last 8.
size += pixy.blocks[trackedBlock].width * pixy.blocks[trackedBlock].height;
size -= size >> 3;

// 		Forward speed decreases as we approach the object (size is larger)
int forwardSpeed = constrain(400 - (size/256), -100, 400);

// Steering differential is proportional to the error times the forward speed
int32_t differential = (followError + (followError * forwardSpeed))>>8;

// Adjust the left and right speeds by the steering differential.
int leftSpeed = constrain(forwardSpeed + differential, -400, 400);
int rightSpeed = constrain(forwardSpeed - differential, -400, 400);

// And set the motor speeds
motors.setLeftSpeed(leftSpeed);
motors.setRightSpeed(rightSpeed);

}

The pan position (one of the outputs of the tracking control) tells us how far the head
is turned away from the setpoint (straight-ahead). This value is used to control the
speed differential between the left and right motors - causing the robot to turn toward
the object it is following.

©Adafruit Industries Page 35 of 39

Feedback Control Basics

Measurements, Setpoints, Errors and
Ouputs
To start with, let's define some terms commonly used to describe control systems:

Measurement - This is typically the value of the parameter you are trying to
control. It could be temperature, pressure, speed, position or any other
parameter. Before you can control anything, you have to be able to measure it.
Setpoint - This is the desired value for the parameter you are trying to control.
Error - This is the difference between the desired value and the measured value.
Output - This is a value calculated based on the error. It is fed back into the
system to 'correct' the error and bring the measurement closer to the setpoint.

There are many ways in which the output value can be calculated. We'll discuss a few
of the more common ones.

Types of Control
There are many ways in which the output value can be calculated. We'll discuss a few
of the more common ones.

•

•
•
•

©Adafruit Industries Page 36 of 39

On/Off Control

In this type of control, the only values for the output are ON or OFF. This is how the
thermostat in your house works. If the measured temperature is below the setpoint
temperature, it turns on the heat. If the measured temperature is above the setpoint,
it turns it off. To prevent rapid cycling which could damage the system, there is
typically some gap between the 'on' threshold and the 'off' threshold. This is called
'hysteresis'.

An On/Off controller with hysteresis s sometimes called a "Differential Gap
Controller". That sounds pretty sophisticated, but it is still a very primitive type of
controller.

On/Off control works well for controlling the temperature of your house, but it is not
very good for applications like robot motion control.

PID Control

You have probably heard of PID controllers. PID stands for Proportional, Integral and
Derivative control. So a PID controller is actually 3 types of controller in one.
 Because of this, PID control is fairly versatile. But not all applications require all three
forms of control.

Many so-called PID controllers are actually just operated as PI, PD or even just P type
controllers. Motion Control applications like the Pixy Pet generally use mostly P or PD
control.

Proportional Control

Proportional control allows for a much smoother response than simple on/off control.
 Proportional control calculates an output value that is proportional to the magnitude
of the error. Small errors yeild a small response. Larger errors result in a more
aggressive response.

Proportional control can be used alone, or augmented with Integral or Derivative
control as needed. The Pixy object following code uses only proportional control.
The object tracking code uses both proportional and derivative control.

©Adafruit Industries Page 37 of 39

Integral Control

Integral control integrates the error over time. If the measurement is not converging
on the setpoint, the integral output keeps increasing to drive the system toward the
setpoint.

Integral control is good for nudging steady, predictable processes closer to
perfection. Since Pixy Pet needs to always respond quickly to random unpredictable
movements, integral control is not appropriate.

Derivative Control

Derivative control looks at the rate of change in the error. If the error is rapidly
approaching zero, the output of the derivative calculation attempts to slow things
down to avoid overshooting the setpoint.

The Pixy object tracking algorithm uses derivative control in conjunction with the
proportional control to help prevent over-correction when tracking objects.

Troubleshooting
Pixy Pet wont track an object

Pixy Pet tracks best if the object is a bright saturated color. It also helps if there are
not a lot of similarly colored things in the environment to distract your Pixy.

Pixy Pet loses the tracked object - even when it is right in
front of it.

Pixy Pet performs best in a brightly lit area. Check with PixyMon to make sure that
Pixy recognizes the object well and re-teach that color signature if necessary.

Sometimes, moving to an area with different lighting (e.g. daylight vs. flourescent)
can change the color appearance and confuse Pixy.

©Adafruit Industries Page 38 of 39

Pixy Pet is easily distracted by other objects
Other objects of the same color can distract Pixy Pet if they are in view. Pixy Pet
will tend to favor the largest recognized object. Teaching Pixy Pet too many
different color signatures increases the chances for confusion. It is better to stick
to one color at a time.

Pixy Pet moves erratically when the object is in view, but
doesn't track it

Make sure your batteries are fresh. Make sure you don't have the pan and tilt servo
plugs reversed.

Pixy Pet's pan/tilt head oscillates - even when the object
is still

Reduce the proportional gain in the ServoLoops.

Pixy Pet seems sluggish and the pan/tilt tracking keeps
glitching.

Your Pixy Pet is getting tired. Feed it some fresh batteries.

©Adafruit Industries Page 39 of 39

	Pixy Pet Robot - Color vision follower
	Table of Contents
	Overview and Materials
	Assemble the Camera
	Seeduino Assembly
	Final Assembly
	Playing with your Pixy Pet!
	The Code
	Pixy Pet Code Design
	Feedback Control Basics
	Troubleshooting

	Overview and Materials
	Materials:
	Tools:
	Assemble the Camera
	Preparing the Pan/Tlt Base
	Remove the Side Tabs
	Trim the remaining tabs flush
	Cut a notch for the cable connectors
	Attach the Camera
	Connect the Servo Cables
	Secure the Cables

	Seeduino Assembly
	No Leonardo? No Problem!
	Parts Required:
	Assembly:

	Final Assembly
	Attach the Camera to the Leonardo
	Connect the ribbon cable
	Attach the Camera and Processor to the Zumo

	Playing with your Pixy Pet!
	Teach the Camera
	Find a toy!
	Connect the Camera
	Run PixyMon

	Upload the Code
	Play Ball!
	The Code
	Pixy Pet Code Design
	Tracking Objects
	Following Objects
	Feedback Control Basics
	Measurements, Setpoints, Errors and Ouputs
	Types of Control
	On/Off Control
	PID Control
	Proportional Control
	Integral Control
	Derivative Control

	Troubleshooting
	Pixy Pet wont track an object
	Pixy Pet loses the tracked object - even when it is right in front of it.
	Pixy Pet is easily distracted by other objects
	Pixy Pet moves erratically when the object is in view, but doesn't track it
	Pixy Pet's pan/tilt head oscillates - even when the object is still
	Pixy Pet seems sluggish and the pan/tilt tracking keeps glitching.

